Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
1.
Circulation ; 148(22): 1778-1796, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37905415

RESUMO

BACKGROUND: Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) share similar clinical manifestations, including cardiovascular complications, suggesting similar underlying immunopathogenic processes. Aberrant neutrophil activation may play a crucial role in the shared pathologies of KD and MIS-C; however, the associated pathogenic mechanisms and molecular drivers remain unknown. METHODS: We performed a single-cell meta-analysis of neutrophil activation with 103 pediatric single-cell transcriptomic peripheral blood mononuclear cell data across 9 cohorts, including healthy controls, KD, MIS-C, compared with dengue virus infection, juvenile idiopathic arthritis, and pediatric celiac disease. We used a series of computational analyses to investigate the shared neutrophil transcriptional programs of KD and MIS-C that are linked to systemic damage and cardiac pathologies, and suggested Food and Drug Administration-approved drugs to consider as KD and MIS-C treatment. RESULTS: We meta-analyzed 521 950 high-quality cells. We found that blood signatures associated with risks of cardiovascular events are enriched in neutrophils of KD and MIS-C. We revealed the expansion of CD177+ neutrophils harboring hyperactivated effector functions in both KD and MIS-C, but not in healthy controls or in other viral-, inflammatory-, or immune-related pediatric diseases. KD and MIS-C CD177+ neutrophils had highly similar transcriptomes, marked by conserved signatures and pathways related to molecular damage. We found the induction of a shared neutrophil expression program, potentially regulated by SPI1 (Spi-1 proto-oncogene), which confers enhanced effector functions, especially neutrophil degranulation. CD177 and shared neutrophil expression program expressions were associated with acute stages and attenuated during KD intravenous immunoglobulin treatment and MIS-C recovery. Network analysis identified hub genes that correlated with the high activation of CD177+ neutrophils. Disease-gene association analysis revealed that the KD and MIS-C CD177+ neutrophils' shared expression program was associated with the development of coronary and myocardial disorders. Last, we identified and validated TSPO (translocator protein) and S100A12 (S100 calcium-binding protein A12) as main molecular targets, for which the Food and Drug Administration-approved drugs methotrexate, zaleplon, metronidazole, lorazepam, clonazepam, temazepam, and zolpidem, among others, are primary candidates for drug repurposing. CONCLUSIONS: Our findings indicate that CD177+ neutrophils may exert systemic pathological damage contributing to the shared morbidities in KD and MIS-C. We uncovered potential regulatory drivers of CD177+ neutrophil hyperactivation and pathogenicity that may be targeted as a single therapeutic strategy for either KD or MIS-C.


Assuntos
Síndrome de Linfonodos Mucocutâneos , Humanos , Criança , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/genética , Ativação de Neutrófilo/fisiologia , Leucócitos Mononucleares , Síndrome de Resposta Inflamatória Sistêmica , Receptores de GABA
3.
J Neurophysiol ; 129(3): 662-671, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752495

RESUMO

This project investigated glial-based lymphatic (glymphatic) function and its role in a murine model of decompression sickness (DCS). DCS pathophysiology is traditionally viewed as being related to gas bubble formation from insoluble gas on decompression. However, a body of work implicates a role for a subset of inflammatory extracellular vesicles, 0.1 to 1 µm microparticles (MPs) that are elevated in human and rodent models in response to high gas pressure and rise further after decompression. Herein, we describe immunohistochemical and Western blot evidence showing that following high air pressure exposure, there are elevations of astrocyte NF-κB and microglial-ionized calcium-binding adaptor protein-1 (IBA-1) along with fluorescence contrast and MRI findings of an increase in glymphatic flow. Concomitant elevations of central nervous system-derived MPs coexpressing thrombospondin-1 (TSP) drain to deep cervical nodes and then to blood where they cause neutrophil activation. A new set of blood-borne MPs are generated that express filamentous actin at the surface that exacerbate neutrophil activation. Blood-brain barrier integrity is disrupted due to activated neutrophil sequestration that causes further astrocyte and microglial perturbation. When postdecompression node or blood MPs are injected into naïve mice, the same spectrum of abnormalities occur and they are blocked with coadministration of antibody to TSP. We conclude that high pressure/decompression causes neuroinflammation with an increased glymphatic flow. The resulting systemic liberation of TSP-expressing MPs sustains the neuroinflammatory cycle lasting for days.NEW & NOTEWORTHY A murine model of central nervous system (CNS) decompression sickness demonstrates that high gas pressure activates astrocytes and microglia triggering inflammatory microparticle (MP) production. Thrombospondin-expressing MPs are released from the CNS via enhanced glymphatic flow to the systemic circulation where they activate neutrophils. Secondary production of neutrophil-derived MPs causes further cell activation and neutrophil adherence to the brain microvasculature establishing a feed-forward neuroinflammatory cycle.


Assuntos
Doença da Descompressão , Sistema Glinfático , Animais , Humanos , Camundongos , Doença da Descompressão/metabolismo , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Sistema Glinfático/fisiologia
4.
J Immunol Methods ; 512: 113403, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502881

RESUMO

Polymorphonuclear neutrophils (PMNs) protect the host from invading microorganisms. However, excessively activated PMNs can also cause damage to host tissues under inflammatory conditions. Here we developed simple assays to determine the activation state of PMNs in human whole blood that contains soluble mediators known to influence PMN functions. Because mouse models are widely used to study the role of PMNs in infectious and inflammatory diseases, we adapted these assays for the rapid and reliable assessment of PMN functions in murine blood samples. Freshly collected whole blood samples were stimulated with agonists of the formyl peptide receptors (FPR) of PMNs and changes in reactive oxygen species (ROS) production and the expression of CD11b, CD62L (L-selectin), CD66b, and CD63 on the cell surface were analyzed with flow cytometry. We optimized these assays to minimize inadvertent interferences such as cell stress generated during sample handling and the loss of plasma mediators that regulate PMN functions. Human PMNs readily responded to the FPR agonist N-formyl-methionyl-leucyl-phenylalanine (fMLP). The most sensitive responses of human PMNs to fMLP were CD11b, CD62L, and CD66b expression with half maximal effective concentrations (EC50) of 5, 8, and 6 nM fMLP, respectively. CD63 expression and ROS production required markedly higher fMLP concentrations with EC50 values of 19 and 50 nM fMLP, respectively. Mouse PMNs did not respond well to fMLP and required significantly higher concentrations of the FPR agonist WKYMVm (W-peptide) to achieve equivalent cell activation. The most sensitive response of mouse PMNs was ROS production with an EC50 of 38 nM W-peptide. Because mice do not express CD66b, we only assessed the expression of CD62L, CD11b, and CD63 with EC50 values of 54, 119, and 355 nM W-peptide, respectively. Validation of our optimized assays showed that they sensitively detect the responses of human PMNs to priming with endotoxin in vitro as well as the corresponding responses of murine PMNs to bacterial infection in a sepsis model. We conclude that these optimized assays could be useful tools for the monitoring of patients with infections, sepsis, and other inflammatory conditions as well as for the design and interpretation of preclinical studies of these diseases in mouse models.


Assuntos
Ativação de Neutrófilo , Sepse , Humanos , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Ativação de Neutrófilo/fisiologia , Citometria de Fluxo , Neutrófilos/metabolismo , Receptores de Formil Peptídeo/metabolismo , N-Formilmetionina Leucil-Fenilalanina/farmacologia
5.
PLoS One ; 17(10): e0276460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36269754

RESUMO

Excessive neutrophil infiltration and dysfunction contribute to the progression and severity of hyper-inflammatory syndrome, such as in severe COVID19. In the current study, we re-analysed published scRNA-seq datasets of mouse and human neutrophils to classify and compare the transcriptional regulatory networks underlying neutrophil differentiation and inflammatory responses. Distinct sets of TF modules regulate neutrophil maturation, function, and inflammatory responses under the steady state and inflammatory conditions. In COVID19 patients, neutrophil activation was associated with the selective activation of inflammation-specific TF modules. SARS-CoV-2 RNA-positive neutrophils showed a higher expression of type I interferon response TF IRF7. Furthermore, IRF7 expression was abundant in neutrophils from severe patients in progression stage. Neutrophil-mediated inflammatory responses positively correlate with the expressional level of IRF7. Based on these results, we suggest that differential activation of activation-related TFs, such as IRF7 mediate neutrophil inflammatory responses during inflammation.


Assuntos
COVID-19 , Neutrófilos , Humanos , COVID-19/genética , COVID-19/metabolismo , Inflamação/genética , Interferon Tipo I/metabolismo , Ativação de Neutrófilo/genética , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , RNA Viral , RNA-Seq , SARS-CoV-2 , Análise de Célula Única
6.
Nat Commun ; 13(1): 6385, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302784

RESUMO

Neutrophils play essential anti-microbial and inflammatory roles in host defense, however, their activities require tight regulation as dysfunction often leads to detrimental inflammatory and autoimmune diseases. Here we show that the adhesion molecule GPR97 allosterically activates CD177-associated membrane proteinase 3 (mPR3), and in conjugation with several protein interaction partners leads to neutrophil activation in humans. Crystallographic and deletion analysis of the GPR97 extracellular region identified two independent mPR3-binding domains. Mechanistically, the efficient binding and activation of mPR3 by GPR97 requires the macromolecular CD177/GPR97/PAR2/CD16b complex and induces the activation of PAR2, a G protein-coupled receptor known for its function in inflammation. Triggering PAR2 by the upstream complex leads to strong inflammatory activation, prompting anti-microbial activities and endothelial dysfunction. The role of the complex in pathologic inflammation is underscored by the finding that both GPR97 and mPR3 are upregulated on the surface of disease-associated neutrophils. In summary, we identify a PAR2 activation mechanism that directs neutrophil activation, and thus inflammation. The PR3/CD177/GPR97/PAR2/CD16b protein complex, therefore, represents a potential therapeutic target for neutrophil-mediated inflammatory diseases.


Assuntos
Ativação de Neutrófilo , Neutrófilos , Receptor PAR-2 , Receptores Acoplados a Proteínas G , Humanos , Inflamação/patologia , Mieloblastina/metabolismo , Ativação de Neutrófilo/fisiologia , Fagocitose , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Biomed Pharmacother ; 145: 112422, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34781139

RESUMO

The abundance of neutrophils in human circulation, their fast mobilization from blood to tissues, along with their alleged short life-span led to the image of neutrophils as a homogeneous cell type designed to fight infections and die in the process. Additionally, their granule content and capacity to produce molecules with considerable cytotoxic potential, lead to the general belief that neutrophil activation inexorably results in side effect of extensive tissue injury. Neutrophil activation in fact causes tissue injury as an adverse effect, but it seems that this is restricted to particular pathological situations and more of an "exception to the rule". Here we review evidences arising especially from intravital microscopy studies that demonstrate neutrophils as cells endowed with sophisticated mechanisms and able to engage in complex interactions as to minimize damage and optimize their effector functions. Moreover, neutrophil infiltration may even contribute to tissue healing and repair which may altogether demand a reexamination of current anti-inflammatory therapies that have neutrophil migration and activation as a target.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/patologia , Neutrófilos/metabolismo , Animais , Humanos , Inflamação/tratamento farmacológico , Ativação de Neutrófilo/fisiologia , Infiltração de Neutrófilos/fisiologia
8.
Front Immunol ; 12: 701721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691017

RESUMO

The six-transmembrane protein of prostate 2 (Stamp2) acts as an anti-inflammatory protein in macrophages by protecting from overt inflammatory signaling and Stamp2 deficiency accelerates atherosclerosis in mice. Herein, we describe an unexpected role of Stamp2 in polymorphonuclear neutrophils (PMN) and characterize Stamp2's protective effects in myocardial ischemic injury. In a murine model of ischemia and reperfusion (I/R), echocardiography and histological analyses revealed a pronounced impairment of cardiac function in hearts of Stamp2-deficient- (Stamp2-/- ) mice as compared to wild-type (WT) animals. This difference was driven by aggravated cardiac fibrosis, as augmented fibroblast-to-myofibroblast transdifferentiation was observed which was mediated by activation of the redox-sensitive p38 mitogen-activated protein kinase (p38 MAPK). Furthermore, we observed increased production of reactive oxygen species (ROS) in Stamp2-/- hearts after I/R, which is the likely cause for p38 MAPK activation. Although myocardial macrophage numbers were not affected by Stamp2 deficiency after I/R, augmented myocardial infiltration by polymorphonuclear neutrophils (PMN) was observed, which coincided with enhanced myeloperoxidase (MPO) plasma levels. Primary PMN isolated from Stamp2-/- animals exhibited a proinflammatory phenotype characterized by enhanced nuclear factor (NF)-κB activity and MPO secretion. To prove the critical role of PMN for the observed phenotype after I/R, antibody-mediated PMN depletion was performed in Stamp2-/- mice which reduced deterioration of LV function and adverse structural remodeling to WT levels. These data indicate a novel role of Stamp2 as an anti-inflammatory regulator of PMN and fibroblast-to-myofibroblast transdifferentiation in myocardial I/R injury.


Assuntos
Coração/fisiologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Animais , Cardiomiopatias/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , NF-kappa B/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Front Immunol ; 12: 701739, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276694

RESUMO

Interleukin 7 (IL-7) is a cell growth factor with a central role in normal T cell development, survival and differentiation. The lack of IL-7-IL-7 receptor(R)-mediated signaling compromises lymphoid development, whereas increased signaling activity contributes to the development of chronic inflammation, cancer and autoimmunity. Gain-of-function alterations of the IL-7R and the signaling through Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) are enriched in T cell acute lymphoblastic leukemia (T-ALL) and autocrine production of IL-7 by T-ALL cells is involved in the phenotypes of leukemic initiation and oncogenic spreading. Several IL-7-associated pathologies are also characterized by increased presence of matrix metalloproteinase-9 (MMP-9), due to neutrophil degranulation and its regulated production by other cell types. Since proteases secreted by neutrophils are known to modulate the activity of many cytokines, we investigated the interactions between IL-7, MMP-9 and several other neutrophil-derived proteases. We demonstrated that MMP-9 efficiently cleaved human IL-7 in the exposed loop between the α-helices C and D and that this process is delayed by IL-7 N-linked glycosylation. Functionally, the proteolytic cleavage of IL-7 did not influence IL-7Rα binding and internalization nor the direct pro-proliferative effects of IL-7 on a T-ALL cell line (HPB-ALL) or in primary CD8+ human peripheral blood mononuclear cells. A comparable effect was observed for the neutrophil serine proteases neutrophil elastase, proteinase 3 and combinations of neutrophil proteases. Hence, glycosylation and disulfide bonding as two posttranslational modifications influence IL-7 bioavailability in the human species: glycosylation protects against proteolysis, whereas internal cysteine bridging under physiological redox state keeps the IL-7 conformations as active proteoforms. Finally, we showed that mouse IL-7 does not contain the protease-sensitive loop and, consequently, was not cleaved by MMP-9. With the latter finding we discovered differences in IL-7 biology between the human and mouse species.


Assuntos
Interleucina-7/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neutrófilos/metabolismo , Serina Proteases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/metabolismo , Glicosilação , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Ativação de Neutrófilo/fisiologia , Proteólise
10.
Bioconjug Chem ; 32(8): 1782-1790, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34269060

RESUMO

A near-infrared fluorescent (NIRF) substrate-based probe (SBP) was conceived to monitor secreted human proteinase 3 (hPR3) activity. This probe, called pro3-SBP, is shaped by a fused peptide hairpin loop structure, which associates a hPR3 recognition domain (Val-Ala-Asp-Nva-Ala-Asp-Tyr-Gln, where Nva is norvaline) and an electrostatic zipper (consisting of complementary polyanionic (d-Glu)5 and polycationic (d-Arg)5 sequences) in close vicinity of the N- and C-terminal FRET couple (fluorescent donor, sulfoCy5.5; dark quencher, QSY21). Besides its subsequent stability, no intermolecular fluorescence quenching was detected following its complete hydrolysis by hPR3, advocating that pro3-SBP could further afford unbiased imaging. Pro3-SBP was specifically hydrolyzed by hPR3 (kcat/Km= 440 000 ± 5500 M-1·s-1) and displayed a sensitive detection threshold for hPR3 (subnanomolar concentration range), while neutrophil elastase showed a weaker potency. Conversely, pro3-SBP was not cleaved by cathepsin G. Pro3-SBP was successfully hydrolyzed by conditioned media of activated human neutrophils but not by quiescent neutrophils. Moreover, unlike unstimulated neutrophils, a strong NIRF signal was specifically detected by confocal microscopy following neutrophil ionomycin-induced degranulation. Fluorescence release was abolished in the presence of a selective hPR3 inhibitor, indicating that pro3-SBP is selectively cleaved by extracellular hPR3. Taken together, the present data support that pro3-SBP could be a convenient tool, allowing straightforward monitoring of human neutrophil activation.


Assuntos
Mieloblastina/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/fisiologia , Sobrevivência Celular , Corantes Fluorescentes , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ionomicina , Microscopia Confocal , Estrutura Molecular , Mieloblastina/química , Neutrófilos/efeitos dos fármacos , Espectrofotometria Infravermelho
11.
Front Immunol ; 12: 642867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796110

RESUMO

Platelet-activating factor (PAF) is an important mediator of the systemic inflammatory response. In the case of sepsis, proper activation and function of neutrophils as the first line of cellular defense are based on a well-balanced physiological response. However, little is known about the role of PAF in cellular changes of neutrophils during sepsis. Therefore, this study investigates the reaction patterns of neutrophils induced by PAF with a focus on membrane potential (MP), intracellular pH, and cellular swelling under physiological and pathophysiological conditions and hypothesizes that the PAF-mediated response of granulocytes is altered during sepsis. The cellular response of granulocytes including MP, intracellular pH, cellular swelling, and other activation markers were analyzed by multiparametric flow cytometry. In addition, the chemotactic activity and the formation of platelet-neutrophil complexes after exposure to PAF were investigated. The changes of the (electro-)physiological response features were translationally verified in a human ex vivo whole blood model of endotoxemia as well as during polymicrobial porcine sepsis. In neutrophils from healthy human donors, PAF elicited a rapid depolarization, an intracellular alkalization, and an increase in cell size in a time- and dose-dependent manner. Mechanistically, the alkalization was dependent on sodium-proton exchanger 1 (NHE1) activity, while the change in cellular shape was sodium flux- but only partially NHE1-dependent. In a pathophysiological altered environment, the PAF-induced response of neutrophils was modulated. Acidifying the extracellular pH in vitro enhanced PAF-mediated depolarization, whereas the increases in cell size and intracellular pH were largely unaffected. Ex vivo exposure of human whole blood to lipopolysaccharide diminished the PAF-induced intracellular alkalization and the change in neutrophil size. During experimental porcine sepsis, depolarization of the MP was significantly impaired. Additionally, there was a trend for increased cellular swelling, whereas intracellular alkalization remained stable. Overall, an impaired (electro-)physiological response of neutrophils to PAF stimulation represents a cellular hallmark of those cells challenged during systemic inflammation. Furthermore, this altered response may be indicative of and causative for the development of neutrophil dysfunction during sepsis.


Assuntos
Ativação de Neutrófilo/efeitos dos fármacos , Fator de Ativação de Plaquetas/farmacologia , Sepse/imunologia , Animais , Endotoxemia/imunologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Inflamação/imunologia , Masculino , Potenciais da Membrana , NADPH Oxidase 2/fisiologia , Ativação de Neutrófilo/fisiologia , Suínos
12.
Eur J Immunol ; 51(2): 459-470, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33078845

RESUMO

Ulcerative colitis (UC) is a disease that frequently relapses and affects more than 0.1% general population; the underlying mechanism is poorly understood. Published data show that polymorphonuclear neutrophils (PMN) contribute to the pathogenesis of UC. This study aims to identify antigen (Ag)-specific PMNs and investigate their role in UC relapse. In this study, the correlation between PMN activities and UC relapse was assessed in a group of UC patients. A UC mouse model was developed to expand the findings of UC patient study. The results showed that a positive correlation was detected between the high PMN activities and the food Ag-specific IgG amounts in colon biopsies of UC patients. UC patient-derived Ag-specific PMNs could be activated upon exposure to food specific Ag. The Ag/FcγRI complexes were detected on the surface of PMNs in UC patients. Re-exposure of sensitized PMNs to specific Ag triggered PMN activation and induced UC-like inflammation in the mouse colon. We conclude that FcγRI plays a critical role in UC relapse. Inhibition of FcγRI can efficiently inhibits experimental UC.


Assuntos
Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Receptores de IgG/metabolismo , Adulto , Animais , Células Cultivadas , Colo/metabolismo , Colo/patologia , Feminino , Humanos , Imunoglobulina G/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Espécies Reativas de Oxigênio/metabolismo , Recidiva
14.
Sci Rep ; 10(1): 10976, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620771

RESUMO

Cr-LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, has been demonstrated as a potent stimulus for neutrophil activation and inflammatory mediator production. However, the mechanisms involved in Cr-LAAO induced neutrophil activation has not been well characterized. Here we investigated the mechanisms involved in Cr-LAAO-induced lipid body (also known as lipid droplet) biogenesis and eicosanoid formation in human neutrophils. Using microarray analysis, we show for the first time that Cr-LAAO plays a role in the up-regulation of the expression of genes involved in lipid signalling and metabolism. Those include different members of phospholipase A2, mostly cytosolic phospholipase A2-α (cPLA2-α); and enzymes involved in prostaglandin synthesis including cyclooxygenases 2 (COX-2), and prostaglandin E synthase (PTGES). In addition, genes involved in lipid droplet formation, including perilipin 2 and 3 (PLIN 2 and 3) and diacylglycerol acyltransferase 1 (DGAT1), were also upregulated. Furthermore, increased phosphorylation of cPLA2-α, lipid droplet biogenesis and PGE2 synthesis were observed in human neutrophils stimulated with Cr-LAAO. Treatment with cPLA2-α inhibitor (CAY10650) or DGAT-1 inhibitor (A922500) suppressed lipid droplets formation and PGE2 secretion. In conclusion, we demonstrate for the first time the effects of Cr-LAAO to regulate neutrophil lipid metabolism and signalling.


Assuntos
Venenos de Crotalídeos/enzimologia , Dinoprostona/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , L-Aminoácido Oxidase/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Adolescente , Adulto , Animais , Venenos de Crotalídeos/farmacologia , Crotalinae/metabolismo , Citosol/metabolismo , Humanos , Técnicas In Vitro , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Modelos Biológicos , Ativação de Neutrófilo/efeitos dos fármacos , Ativação de Neutrófilo/genética , Ativação de Neutrófilo/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Regulação para Cima/efeitos dos fármacos , Adulto Jovem
15.
Cell Rep ; 31(5): 107602, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375035

RESUMO

Neutrophil extracellular traps (NETs) promote atherosclerosis by inducing proinflammatory cytokines, but the underlying mechanism remains unknown. NET DNA is immunogenic, but given the cytotoxicity of NET histones, it is unclear how it activates cells without killing them. Here, we show that histones, DNA, citrullination, and fragmentation synergize to drive inflammation below the histone cytotoxicity threshold. At low concentrations, nucleosomes induce cytokines, but high concentrations kill cells before cytokines are produced. The synergy between histones and DNA is critical for sub-lethal signaling and relies on distinct roles for histones and DNA. Histones bind and activate TLR4, whereas DNA recruits TLR4 to histone-containing endosomes. Citrullination is dispensable for NETosis but potentiates histone-mediated signaling. Consistently, chromatin blockade or PAD4 deficiency reduces atherosclerosis. Inflammation is also reduced in infected mice expressing GFP-tagged histones that block TLR4 binding. Thus, chromatin promotes inflammation in sterile disease and infection via synergistic mechanisms that use signals with distinct functions.


Assuntos
Citrulinação/fisiologia , DNA/metabolismo , Histonas/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Cromatina/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Ativação de Neutrófilo/fisiologia
16.
Nat Commun ; 11(1): 1839, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296058

RESUMO

Complex tumor microenvironmental (TME) features influence the outcome of cancer immunotherapy (IO). Here we perform immunogenomic analyses on 67 intratumor sub-regions of a PD-1 inhibitor-resistant melanoma tumor and 2 additional metastases arising over 8 years, to characterize TME interactions. We identify spatially distinct evolution of copy number alterations influencing local immune composition. Sub-regions with chromosome 7 gain display a relative lack of leukocyte infiltrate but evidence of neutrophil activation, recapitulated in The Cancer Genome Atlas (TCGA) samples, and associated with lack of response to IO across three clinical cohorts. Whether neutrophil activation represents cause or consequence of local tumor necrosis requires further study. Analyses of T-cell clonotypes reveal the presence of recurrent priming events manifesting in a dominant T-cell clonotype over many years. Our findings highlight the links between marked levels of genomic and immune heterogeneity within the physical space of a tumor, with implications for biomarker evaluation and immunotherapy response.


Assuntos
Genômica/métodos , Melanoma/metabolismo , Biomarcadores Tumorais/genética , Variações do Número de Cópias de DNA/genética , Humanos , Melanoma/genética , Mutação/genética , Ativação de Neutrófilo/genética , Ativação de Neutrófilo/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia
17.
Redox Biol ; 28: 101344, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31639650

RESUMO

Neutrophils produce a cocktail of oxidative species during the so-called oxidative burst to attack phagocytized bacteria. However, little is known about the neutrophils' redox homeostasis during the oxidative burst and there is currently no consensus about the interplay between oxidative species and cellular signaling, e.g. during the initiation of the production of neutrophil extracellular traps (NETs). Using the genetically encoded redox sensor roGFP2, expressed in the cytoplasm of the neutrophil-like cell line PLB-985, we saw that stimulation by both PMA and E. coli resulted in oxidation of the thiol residues in this probe. In contrast to the redox state of phagocytized bacteria, which completely breaks down, the neutrophils' cytoplasmic redox state switched from its intital -318 ±â€¯6 mV to a new, albeit higher oxidized, steady state of -264 ±â€¯5 mV in the presence of bacteria. This highly significant oxidation of the cytosol (p value = 7 × 10-5) is dependent on NOX2 activity, but independent of the most effective thiol oxidant produced in neutrophils, MPO-derived HOCl. While the shift in the intracellular redox potential is correlated with effective NETosis, it is, by itself not sufficient: Inhibition of MPO, while not affecting the cytosolic oxidation, significantly decreased NETosis. Furthermore, inhibition of PI3K, which abrogates cytosolic oxidation, did not fully prevent NETosis induced by phagocytosis of bacteria. Thus, we conclude that NET-formation is regulated in a multifactorial way, in part by changes of the cytosolic thiol redox homeostasis in neutrophils, depending on the circumstance under which the generation of NETs was initiated.


Assuntos
Homeostase , Ativação de Neutrófilo/fisiologia , Neutrófilos/fisiologia , Oxirredução , Algoritmos , Biomarcadores , Linhagem Celular , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Expressão Gênica , Genes Reporter , Humanos , Imunofenotipagem , Espaço Intracelular , Modelos Biológicos , Fagocitose/imunologia
18.
Korean J Anesthesiol ; 73(2): 151-157, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31378052

RESUMO

BACKGROUND: BMS-470539, a recently introduced selective agonist of the melanocortin 1 receptor, is known to have anti-inflammatory properties. In this study, we investigated the effects of BMS-470539 on lipopolysaccharide (LPS)-induced inflammatory responses and delayed apoptosis with its signaling pathways in human neutrophils. METHODS: Isolated human neutrophils were incubated with various concentrations of BMS-470539 (1, 10, and 100 µM) in the presence or absence of LPS (100 ng/ml), and the expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin (IL)-6, and IL-1ß, were assessed. The effects of BMS-470539 on the expression of mitogen-activated protein kinases (MAPKs), such as p38, extracellular-signal-regulated kinase 1/2, and c-Jun N-terminal kinase, and the expression of nuclear factor kappa B (NF-κB) in LPS-stimulated human neutrophils, were evaluated by enzyme-linked immunosorbent assay. Neutrophil apoptosis was also measured by fluorescence-activated cell sorting (annexin V/propidium iodide) in LPS-stimulated neutrophils under treatment with BMS-470539. RESULTS: BMS-470539 attenuated LPS-induced expression of pro-inflammatory cytokines, and phosphorylation of MAPKs and NF-κB. LPS stimulation reduced neutrophil apoptosis compared to the controls; however, BMS-470539 significantly inhibited the reduction of neutrophil apoptosis. CONCLUSIONS: BMS-470539 can suppress the inflammatory responses of LPS-stimulated neutrophils by inhibition of MAPK pathways or NF-κB pathway, and it can also inhibit LPS-delayed neutrophil apoptosis.


Assuntos
Imidazóis/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Ativação de Neutrófilo/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Ativação de Neutrófilo/fisiologia
19.
Front Immunol ; 11: 619925, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33679708

RESUMO

Neutrophils are the most prevalent leukocytes in the human body. They have a pivotal role in the innate immune response against invading bacterial and fungal pathogens, while recent emerging evidence also demonstrates their role in cancer progression and anti-tumor responses. The efficient execution of many neutrophil effector responses requires the presence of ß2 integrins, in particular CD11a/CD18 or CD11b/CD18 heterodimers. Although extensively studied at the molecular level, the exact signaling cascades downstream of ß2 integrins still remain to be fully elucidated. In this review, we focus mainly on inside-out and outside-in signaling of these two ß2 integrin members expressed on neutrophils and describe differences between various neutrophil stimuli with respect to integrin activation, integrin ligand binding, and the pertinent differences between mouse and human studies. Last, we discuss how integrin signaling studies could be used to explore the therapeutic potential of targeting ß2 integrins and the intracellular signaling cascade in neutrophils in several, among other, inflammatory conditions in which neutrophil activity should be dampened to mitigate disease.


Assuntos
Antígenos CD18/fisiologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Transdução de Sinais , Animais , Anti-Inflamatórios/farmacologia , Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Antígeno CD11a/química , Antígeno CD11a/fisiologia , Antígeno CD11b/química , Antígeno CD11b/fisiologia , Antígenos CD18/química , Adesão Celular/fisiologia , Quimiocinas/farmacologia , Quimiocinas/fisiologia , Quimiotaxia de Leucócito/fisiologia , Proteínas do Citoesqueleto/metabolismo , Dimerização , Humanos , Inflamação , Camundongos , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Fagocitose/fisiologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Selectinas/fisiologia , Especificidade da Espécie , Talina/metabolismo , Migração Transendotelial e Transepitelial/fisiologia
20.
FEBS Open Bio ; 10(2): 180-196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31785127

RESUMO

Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D-PAGE, fluorescent mucin binding on a blot and HPLC-MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu-1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.


Assuntos
Mucinas/metabolismo , Ativação de Neutrófilo/fisiologia , Neutrófilos/metabolismo , Adsorção , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Porinas , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...